FOXD1 promotes nephron progenitor differentiation by repressing decorin in the embryonic kidney.

نویسندگان

  • Jennifer L Fetting
  • Justin A Guay
  • Michele J Karolak
  • Renato V Iozzo
  • Derek C Adams
  • David E Maridas
  • Aaron C Brown
  • Leif Oxburgh
چکیده

Forkhead transcription factors are essential for diverse processes in early embryonic development and organogenesis. Foxd1 is required during kidney development and its inactivation results in failure of nephron progenitor cell differentiation. Foxd1 is expressed in interstitial cells adjacent to nephron progenitor cells, suggesting an essential role for the progenitor cell niche in nephrogenesis. To better understand how cortical interstitial cells in general, and FOXD1 in particular, influence the progenitor cell niche, we examined the differentiation states of two progenitor cell subtypes in Foxd1(-/-) tissue. We found that although nephron progenitor cells are retained in a primitive CITED1-expressing compartment, cortical interstitial cells prematurely differentiate. To identify pathways regulated by FOXD1, we screened for target genes by comparison of Foxd1 null and wild-type tissues. We found that the gene encoding the small leucine-rich proteoglycan decorin (DCN) is repressed by FOXD1 in cortical interstitial cells, and we show that compound genetic inactivation of Dcn partially rescues the failure of progenitor cell differentiation in the Foxd1 null. We demonstrate that DCN antagonizes BMP/SMAD signaling, which is required for the transition of CITED1-expressing nephron progenitor cells to a state that is primed for WNT-induced epithelial differentiation. On the basis of these studies, we propose a mechanism for progenitor cell retention in the Foxd1 null in which misexpressed DCN produced by prematurely differentiated interstitial cells accumulates in the extracellular matrix, inhibiting BMP7-mediated transition of nephron progenitor cells to a compartment in which they can respond to epithelial induction signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ablation of the Renal Stroma Defines Its Critical Role in Nephron Progenitor and Vasculature Patterning

The renal stroma is an embryonic cell population located in the cortex that provides a structural framework as well as a source of endothelial progenitors for the developing kidney. The exact role of the renal stroma in normal kidney development hasn't been clearly defined. However, previous studies have shown that the genetic deletion of Foxd1, a renal stroma specific gene, leads to severe kid...

متن کامل

Sall1 in renal stromal progenitors non-cell autonomously restricts the excessive expansion of nephron progenitors

The mammalian kidney develops from reciprocal interactions between the metanephric mesenchyme and ureteric bud, the former of which contains nephron progenitors. The third lineage, the stroma, fills up the interstitial space and is derived from distinct progenitors that express the transcription factor Foxd1. We showed previously that deletion of the nuclear factor Sall1 in nephron progenitors ...

متن کامل

Identification of a Multipotent Self-Renewing Stromal Progenitor Population during Mammalian Kidney Organogenesis

The mammalian kidney is a complex organ consisting of multiple cell types. We previously showed that the Six2-expressing cap mesenchyme is a multipotent self-renewing progenitor population for the main body of the nephron, the basic functional unit of the kidney. However, the cellular mechanisms establishing stromal tissues are less clear. We demonstrate that the Foxd1-expressing cortical strom...

متن کامل

FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development.

Recent studies indicate that nephron progenitor cells of the embryonic kidney are arranged in a series of compartments of an increasing state of differentiation. The earliest progenitor compartment, distinguished by expression of CITED1, possesses greater capacity for renewal and differentiation than later compartments. Signaling events governing progression of nephron progenitor cells through ...

متن کامل

Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival

MicroRNAs are small noncoding RNAs that post-transcriptionally regulate mRNA levels. While previous studies have demonstrated that miRNAs are indispensable in the nephron progenitor and ureteric bud lineage, little is understood about stromal miRNAs during kidney development. The renal stroma (marked by expression of FoxD1) gives rise to the renal interstitium, a subset of peritubular capillari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 141 1  شماره 

صفحات  -

تاریخ انتشار 2014